On Preventing Replay Attacks on Security
Protocols

Sreekanth Malladi, Jim Alves-Foss, Robert B. Heckendorn
Center for Secure and Dependable Systems
Department of Computer Science
University of Idaho
Moscow, ID 83844 USA
{msskanth, jimaf, heckendo }@cs.uidaho.edu

Abstract— Replay attackson security protocols have been dis- Strategies presented to counter reflection attacks using for-

cussed for quite some time in the literature. However, the efforts to - mat asymmetry fail if the format asymmetry is itself attackable.

address these attack§ have been largely incomplete, Iacking gener’AIthough format asymmetry (type-flaws) was proven to with-
ality and many times in fact, proven unsuccessful. In this paper we

address these issues and prove the efficacy of a simple and generaptand type-flaw attacks by Heather al[11], the suggested

scheme in defending a protocol against these attacks. We believescheme of component numbering as a corollary does not con-
that our work will be particularly useful in security critical appli- sider attacks using interleaving of different protoéolButtman
cations and to protocol analyzers that are unable to detect some or et, al prove “protocol independence” through disjoint encryp-
all of the attacks in this class. tion and suggest a protocol numbering scheme to achieve dis-
Index Terms—security protocols, replay attacks, adapted strand joint encryption. However, there is not yet an international stan-
spaces, run identifiers, component numbers. dard on protocol numbering (to identify each protocol). An-
other suggestion in the same paper is to use a different key-
ing material for each application—an indeed strong assumption
since it is unlikely to be followed by all users due to the high
EPLAY attacks have been discussed for quite some tingest of certified keys. This was also discussed in [8].
in the literature (eg. [1], [2], [3], [4]). We generalize the Thus, one can observe some visible characteristics in all
definition of a replay attack asin attack on a security proto- these solutions—They are either unsuccessful, or too specific.
col using replay of messages from a different context into t®me of them are too expensive to implement and some oth-
intended (or original and expected) context, thereby fooling tlegs are interdependent (eg. as discussed above where solutions
honest participant(s) into thinking they have successfully comsing format asymmetry depend on type tagging or component
pleted the protocol run. numbering and these in turn depend on using disjoint encryp-
Syverson in [2] presents an exhaustive taxonomy of replégn). Hence, an interesting question to ask would be, “can
attacks classifying them at the highest level as run-external ahése interdependencies be taken advantage of to launch new
run-internal attacks, basing on the origin of messages. Eactkirfds of attacks?”.
these can be further classified into interleavings, classic replaysiMost of the automated analyzers also fail to detect at least
reflections, deflections and straight replays basing on message attack in this class. Although, NRL protocol analyzer was
destination. observed to have been able to detect all types of replays given
Traditional methods to include nonces have proven to belof Syverson, it was still observed to be difficult to analyze for
little value against replay attacks (eg. [5], [6]). Attempts tspecific attacks in this class [12]. However, prevention is an-
use time-stamps in messages were beset with problems soitter matter.
as dealing with the asynchronous world [1]. Gong and Syver-Carlsen presents a list of type information that can be at-
son present fail-stop protocols under a restrictive class of ptached to messages and elements [13]. These include protocol
tocol design rules, that avoid these attacks under certain coridentifier, protocol run identifier, primitive types of data items,
tions [3]. Some other attempts have been exclusively directednsmission step identifier and message subcomponent identi-
towards countering reflections [7]. These mechanisms wdikr. Aura [4] studies these techniques and comes up with some
by including the identity of sender, recipient or both in messtrategies against replay attacks that are neither necessary nor
sages. Suggestions of binding cryptographic keys to their gufficient but enhance the robustness of a protocol. A recent
tended use, specialized use of shared keys to identify sentiend in the literature has been to prove protocol security against
and receiver have been cited in numerous places including [Specific attacks by suggesting tagging messages with one of the
[9], [10], [4] but are effective only in limited contexts eg. retype information suggested by Carlsen (eg. [14], [11]).
flections and deflections but not straight replays. Syverson diq—I o . . .
. f ntuitively, different protocols can have different messages with the same
cusses these counter-measures exhaustively in [2]. component number, still making it vulnerable to type-flaws. The original sug-

gestion to tag with primitive types of data items, however, would be effective in
Project funded in part by DARPA under grant MDA972-00-1-0001 the presence of interleaving of different protocols but is expensive to implement

I. INTRODUCTION

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2002 2. REPORT TYPE 00-00-2002 to 00-00-2002
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

On Preventing Replay Attacks on Security Protocols £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of |daho,Center for Secure and Dependable Systems,PO Box | REPORT NUMBER
441008,M oscow, | D,83844-1008

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 7
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

In the same spirit, we prove thall replay attacks can be pre-behavior does not succeed in breaking a protocol in this scheme.
vented by tagging each encrypted component witession- Further, hashing with participants’ identities (cited as useful
id (another name for Carlsen’s protocol run identifier) and ia numerous places including [4], [7], [10]) prevents other at-
component numbefrenaming Carlsen’s message subcompdempts to spoof user identities and launch man-in-middle type
nent identifier). However, unlike previous attempts, our sugdtacks.
gestion is ageneralsolution and prevents all types of replay The proof we are going to present in this paper follows a sim-
attacks in Syverson’s taxonomy. Although it is not an entirelyle concept to establish the desired results, following a proof
new solution, it solves the problem of replays using a combinstructure laid out in [11]:
solution that is devoid of any possible vulnerabilities due to in- If a protocol is secure in the absence of replays, it is also se-
terdependencies. cure under our tagging scheme in the presence of replay attacks

Introducing component numbers inside encryptions is int@R
itive, but the generation and use of session-ids requires som&Vhenever there is an attack on a protocol using the tagging
explanation. Some have discussed tagging messages wittselfleme, there should also be an attack on the protocol in the
the information that is in possession of a principal and relevaaibsence of replays
to the protocol [15]. This is also called tipeinciple of full in- The utility of the result of this paper is manifold. Firstly,
formation Aura [4] hints at a trivial way of including a hashit reduces the task of protocol analyzers that fail to detect any
of all previous messages in a protocol run, almost as a substibset of replay attacks and increases the trust in the remaining
tute to the principle of full information and the run identifieranalysis. Secondly, it gives more leverage to a protocol designer
This is prudent to some extent. In fact, as Aura points out\itith the implicit protection that it provides against many known
is enough to include only a hash of the redundant data thathseats. Lastly, it is relatively inexpensive to implement such a
already known to the receiver. This doesn’t adversely affect taseheme especially compared to those for example, that require
performance for obvious reasons. However, careful observatiomique keys for each application.
of this suggestion reveals a possible vulnerability—two proto- The rest of the paper is organized as follows: In the next sec-
col runs can overlap in the executed information at a typicabn (2), we will introduce our model of a protocol. In section 3,
stage of the runs! we will show that any given bundle can be transformed into an

Therefore, we suggest a different approach to generaguivalent but well-tagged bundle. In section 4, we will prove
session-ids to identify runs. For the purpose of this discustr main result. We illustrate our concepts on the Otway-Rees
sion, it suffices to know that such identifiers can be gengsrotocol as an example in section 5 and end with a conclusion.
ated to be used in an effective way and will possess a neces-
sary property—remaining unique to every protocol run. Briefly,
all participants need to choose a random number, and combine
those into a single long string of random bits. This value shoufti Tags, Facts and Subfacts
be hashed together with the identities of all principals, reducingTags and Factsare defined in the model as:
the chance of an accidental match in session-ids to a great ex-
tent. Two features are necessary to generate such an identifier

Il. THE PROTOCOLMODEL

1. Every principal should possess the same hash function. 2. Tag ::= JOIN SID CNO
A change in one of the random numbers/principals’ identities Fact := UF | EF | JOIN Fact Fact
should make the resulting value differ from it's original value. UF = JOIN Atom UF

Observe that the generated session-id is different in proper-
ties from other similarly used identifiers. For example, the run EF :=ENCRTF
identifier used in Otway-Rees protocol [16] is generated by only TF = JOIN T'ag Fact
one participant and hence was shown to be prone to replay at-
tacks [17]. Itis also similar to “cookies” coined in Photuris [18}Vhere UF, EF, TF represent unencrypted, encrypted and
which are an add-on that can be used to make a protocol mEt@9ed fact respectively.
resistant to DOS attacks. A cookie is a unique nonce computedf: ef denote the set of unencrypted and encrypted facts
from the names of the sending and receiving parties and loEgFPectively. ~Atom is the set of atomic values (eg.
secret information that only the sender possesses. Cookies ptgee: Bob, Na, PubKey(A) etc.) assumed to be contained
vide initially weak authentication to users while they aid in suif & protocol. o _ _
sequent establishment of strong authentication. Session-ids af@ftén we need arojection functioron tagged facts to obtain
similar to cookies in the kind of initial assumptions and thefl® tag or fact components, defined as:
ultimate use, except, unIiI_<e cquies vv_here only the sender is (t, 1=t (tf)a=f
aware of the value, a session-id is publicly known.) o .

However, the publicly known identifier needs to be unique We will denote the set of session-ids sigl and the set of

for every protocol run. Intuitively, a dishonest principal mighfMPonent numbers asio. A typical tag in a rum: shall be
Written as, (sida, cno). The first part is the session-id of

use a different value from the pre-agreed upon value. (In fact, i
this will be definitely true if he replays components from previ"Elnd the second part is the component number for one of the

OUSIy CompIEted run_s and not from "_ﬂerleave_d runs). Howeven Facts, components or messages will be used interchangeably but message
the proof we are going to present will establish that even sueli be used to mean the entire collection of facts sent in a single protocol step.

encrypted facts ofe. JOIN andENCR represent concatenating Var consists of unencryptedit’), encrypted ¢v) and func-
two data items and encrypting a data item respectively. Whtan variables {v)3) with fv C uv. We define an instantiation
two data items:, b are to be concatenated, we will write, b function ins to instantiate elements iNWar, to correspond to
or (a,b). When a data item is to be encrypted with a ke, elements irFact.

we will write, {a}. Also, subfact relatiorr on facts is defined

as follows: Let,

Definition 1: The subfact relation is the smallest relation on
facts such that: ins; : TagVar — Tag, andins, : AtomVar — Atom

1) fc fy so that,vtv € TagVar A v € AtomVar,
2) fo{tf' e if fC@f)e ins(tv) = t andins, (v) = f for somet € Tag A f € Atom.
3) fe(fifo)ffCivic fo

Also, fCtf if (¢, f)Ctf. Combiningins; andins,, we definens as:

ins : Var — Fact

B. Adapting Strand Space Model with Tagged Facts so thatvs € Var, ins(v) = f, for somef € Fact.

In this section, we define a new adapted strand space modeAlso, ins can be defined on all possible variables as:
from the original strand space model [19] to suit tagged facts.
Definition 2: A strand is a sequence of communications by {{(inst(tv’), insu(v) Y,y © = {(t0,0")} i

either an agent (honest or dishonest) in a protocol run. It isns(v) = (ins(01). ins(cs) (:
INs(vy), INS(v2 V= (V1,V2).

represented as a sequence of faetg1,+/2,...,+fn). A
‘+' indicates transmission of a fact and* indicates reception
of a fact. Every node in the set of nodgstransmits or receives
a fact & f) and belongs to a unique strand. R
1) Letn;,niy1 be consecutive nodes on the same strand. (e = (=(a), +(m), —(2), +({t2, @, b, x}sn,.),
Then, there exists an edge = n,, in the strand. = ({ts3, @, 0,10} 51y))

2) Ifn; = 4 f andn; = — f are nodes belonging to different(* 2’ represents that)’ is not expected to decrypt this variable,

strands, then there exists an edge— n;. according to the protocol).

3) N together with both the sets of edges = n;11 and A typical execution byBob (B) in a run 3 with Alice (A),

n; — n; is adirected graph\, (— U =)). would look like (assuming that Bob is honest):

A bundle represents a particular event history of the com-
munication. Itis an acyclic, finite subgraph @, (— U =)). .
Formally, if - cC—, =¢C= and(—¢ U ;s<c) is(a finite)s>et ins(temp) = (~(4), +(Np), - (X),
of edges, thel’ = (—¢ U =¢) is a bundle if: + ({(SID3,CNO3), A, B, X }snps),

1) whenevemn, € N receives a fact, there exists a unique — ({(SIDg,CNO3),A, B,NB}shys))

ny such thatn; —¢ no;

As an example, letemp represent the roleb* in the Woo
and Lam protocoll; [15]:

2) Wheneven, € Ng withny; = ns, ny =¢ ne € C; where,

3) Cis acyclic.
A noden is anentry pointto a set of factf_‘ h_‘ no node previo_us ins(a) = A, ins(b) = B, ins(s) = S,ins(ny) = Np,
to n has a fact-f with f € F. A fact originatesonn if n is ins(z) = {(SIDg, CNO1), A, B, N5 }shps (= X).

an entry point to{ /' | f = f’}. Similarly, a tagged factf
originateson n if n is an entry point to{¢tf’ | tf = ¢f'}. A
fact or a tagged fact ianiquely originating in a bundle if it ¢ js important here to note that, the functiors can be de-
originates on a unique node of the bundle. fined to map to a new set of values each time. So that, this
1) Honest Strands: We use the concept of strand temcaptures the aspect of different protocol runs containing differ-
plates [11] to define roles in a protocol. These templates maigx values. It is also interesting to see for which mapping of the
use of a set of variable¥ar defined as below: ins function, we will be able to obtain an attack on a protocol.
2) Correct-tagging: An encrypted fact is said to be well-
tagged if the tag component of the fact has the correct session-

Var == UV | EV | JOIN Var Var id and component number in it, i.e. the encrypted fact is being

UV == AtomVar | JOIN AtomVar UV generated and sent in the expected context. We capture this

EV := ENCR TaggedVariable using the formalizations that we present below.

) Let ¥* represent the strand spaces of all possible protocol
TaggedVariable ::= JOIN TagVar Var

runs, where the single protocol rane >* and,

CNo : ©¥* x ef — cno such that,

where,UV" - Unen_crypted VariablelzV" - Encrypted Variable. 3Function variables are of the forl\PPLY F, UV whereF, is any func-
TagVar - Tag Variable. tion. eg. Hash, PK etc.

Text messagé+f) with f € Tp.
flushing (—f).

Tee<_f7 +fa +f>
Concatenation(— f1, — fa, + f1 f2)-
Separation{— fi fo, + f1, + f2).
Key (+k) with k € Kp.

. _ Encryption (—k, — f, +{(t, f) }x), k € Kp.
These properties ensure unique tags for every subcomponentp pecryption(—k—1, —{(t, £} 14, + 1), k € Kp.

Vfi, focef- fi # fa = CNo(a, f1) # CNo(a, f2)

Also let,Sld : ¥* — sid such thata € ¥* - Sld(«) € sid

VOél,O(Q eX* - 7é y = Sld(()él) 75 S|d(0(2)

mXunoOo-—aA1Z

of any protocol and any run of a protocol. R Replaying(+f), f € Ep.
UsingSid andCNo, an ideal tag environment; can be for- Note that we consider not only replaying of encrypted com-
mally defined: ponents, but also replaying of unencrypted components. In fact,

we allow the penetrator to replay a message of any type into a
message of a different (expected) type. For exampleltam

w: X" x ef — Tag such that, in place of anAtom, an Atom in place of an encrypted com-
ponent, an encrypted component in place of an encrypted com-
Ya € ¥, Vf € ef - w(a, f) = (Sld(a), CNo(a, f)) ponent and so on. For example, sending a mesgagg, with

So that, for each protocol rum, Sld(«) is the session-id for f1 € uf andf; € ef in place off; € uf can be constructed as

o. (when the context is understood, we will simply writgf)). @ sequence d¥l andR strands.
However, this does not restrict the generality of the scheme.

As we will show in the proof, the scheme also prevents all

e'such type flaw attacks too, due to component numbering. The
session-id helps in preventing all type-flaw attacks that occur
not only in the same run or a different run of the same protocol,

Definition 3: Let f = {tf'} be a fact in a protocol run;
then well-tagge(lf) can be inductively defined on all possibl
facts as follows:

o if (tf")2 € uf therf well-taggedf) < (tf')1 = w(f); but also those that occur from a different run using a different
« if (tf')2 € ef then, well-taggedf) iff protocol.
well-tagged(t /")) A (tf')1 = w(f); Lemma 1:Every ill-tagged fact originates on dhor anR
« well-taggedfi, f2) & (well-taggedfi) A strand.
well-tagged f2)) Proof. According to assumption 1, ill-tagged facts do not

originate on honest strands. The only possible strands for the
Note that, well-tagged is a partial function. Therefore, it igrigin of a fact areM, K, E andR strands. In the case &
undefined for facts that are not encrypted. andK strands, there is no tagging. In the case & strand, it
Assumption 1:There exists an ideal tag environment,for may or may not be well-tagged (we do not restrict the penetrator
each set of strands representing a protocol run, that is obtait@gut correct tags inside encryptions). That leaves us Rith
by instantiating a set of strand templates such that all the fastgands. Since these involve replaying old messages, they would

in the protocol run are well-tagged with respect.to necessarily be ill-tagged.
Assumption 2:If the fact f originates on a regular strand,
then well-tagged(). I1l. TRANSFORMING BUNDLES

In other words, we assume that an honest agent always tag9soyerview
an encrypted fact with a correct tag (as defined above). Onthe))
other hand, we allow a penetrator to tag a message with an)}n this section, we chus on transfo'rmmg bundles to “well-
arbitrary tag. If a fact is ill-tagged, this would mean that eithd@99ed bundles”. We will show that, given a bundlewe can
the penetrator has “replayed” it from another context or he didf@nge all the tags i@ so that the resulting bundle has facts, all

not chose to tag with the correct component number and/or (fgvhich are well-tagged. Since we assume that an honest agent
pre-agreed upon session-id. checks all accessmle_ tags in a message that he receives, we do
not change the tags inside those messages. On the other hand,

3) Penetrator Strands:We make two changes in the pene;ocoiving an ill-tagged fact that cannot be decrypted should not

trator strands in this model—firstly, we assume that a penet@fange the behavior of an honest agent when it is changed to
tor possesses a set of encrypted faBlg, that he would have o taq0ed. This is the sole concept around which our trans-
somehow obtained (e.g., by eavesdropping over a network*f&rmation revolves

obtained in a previous run in which he was a legitimate user),
in addition to a set of keyKp and textsTp. Secondly, we in-
clude a replayingR) strand to capture the action of a penetratds. The Transformation Functiom,
replaying an encrypted component. The definition below states the required propertiesof
Definition 4: A penetrator strand is one of the following: Definition 5: Given a bundle”, executed in an ideal tag en-
vironmentw, we definey : Fact — Fact to be a transforma-
tion function that transform&’ as a well-tagged bundle if:

4By definition, subscript “2” is a projection that returns the fact component 1) Y preserves unencrypted faCtS:‘/j(f) =f if [€ uf.
of a tagged fact (section 1I-A). 2) 1 returns well-tagged terms: well-tagged()).

3) 4 is the identify function over well-tagged terms: « Casev is an encrypted fact; say,= {(tv’, v') }x.; then:
if well-tagged(f) theny(f) = f.

4) ¢ distributes through encryptions: Y(ins(v)) = P({(inse(tv”), insy (V")) Yins, (ko))
= {(inse(tv’), insy (V")) bins, (o)
VA) = {wf), v () (from condition 3 of definition 5 and since
5) 1 distributes through concatenations: well-taggedins(v)) from assumption 2
= {(insé(tv/)vinsv<vl))}insv(k’u/)
(f1,f2) = (V(f1),9(f2)) (by assumption 2, and since
6) When v is applied to an ill-tagged facy of C, it well-taggedins’ (v)), ins; (tv') = inst(tv"))
produces a fact that has an essentially new tag. i.e. a fact = ins'(v)
that has a tag not in common with(f”) for any other (from definition ofins andins’,(v") = ins, (v'),
fact f’ of C: T . ,
kv') = ins,(k
V. [€ ef, ~well-taggedf) A f' T w(f) A (f')2 # insy (ko) = ins, (k')
(f")2= « Casev is a pair; sayp = (vy, v2); then,
() #o(f h
Y(ins(v)) = ¥ (ins(vy),ins(vs)) (by definition ofins)
'ghis establishes an injectivity property forover facts of = (¢(ins(v1)),v(ins(v2))) (cond. 5 of def. 3
. T [
The following lemma proves that suchyacan always be B _('nf (v1), ins'(v2)) {from above results
found: = ins'(v1, v2)
Lemma 2:For any given bundl€ in an ideal tag environ- = ins'(v)
mentw, it is possible to define some transformation function
for C. [|

Proof: The method we give below gives a recipe for con-
structing a transformation function defined in definition 5. D. Penetrator Strands
Let there be a facf. We shall define how the transformation | this section we will show how we transform penetrator

would be done on all possible smallest sub facty dfefore girands inc' to equivalent penetrator strands in the well-tagged

defining it onf itself. bundle (sayC’), without any additional penetrator knowledge.

1) If f € uf, lift the transformation function otfi for con- We consider each type of penetrator strand defined in defini-
dition 1:4(f) = f. tion 4 and define a corresponding strand’ih In most cases,

2) If f={(, f")}w € ef and well-tagged(), then, define we will preserve the strand structure, but will retain the same
Y{{t', f) i = {(t', f') }» for condition 3. set of facts in every case.

3) If f = {(t',f)}w € ef, f € uf and—well-tagged),
then, definep{ (', f')}r = {(t", f')}» so thatt” = | M Text messagelet S = (+z) with z € Tp. Define
w(f") for condition 3. S’ = (+4(z)), which is anM strand becausé(z) = =

4) If f={(t',f)}w € ef, f' € ef and—well-tagged f), whenz € uf from condition 1 of definition 5.
then, definep{ (', f') }r = {(t", (")) }r wheret” = | F Flushing: Let S = (—f). DefineS’ = (—1(f)), which
W(f/) for condition 4. is anF strand.

5) Iff = (f1,f2), thendefing/(f) = (4(f1),¥(f2)) (for | T Tee Let S = (—f +f +f). Defines =
condition 5). (=(f), +0(f), +¥(f)), which is aT strand.

6) Sincew generates unique tags, condition 6 is satisfied. , ¢ Concatenation Let S = (—f1, —fa,+f1f2). Define

u S" = (=(f1), =v(f2), +¥(f1, f2)) whichis a valid con-

catenation strand, becauséf:, f2) = (1(f1),v(f2)) by
condition 5 of definition 5.

C. Regular Strands o SSeparation Let S = (—fi1 fo, +f1, + f2). DefineS’ =

If S is a regular strand=£ ins(temp) for some strand (—=(f1, f2), +¥(f1), +¥(f2)) which is a valid separation
templatetemp), then(S) is also a regular strand. Con- strand, again by condition 5 of definition 5.
sider, S’ = ins'(temp) and ins’(v) = t(ins(v)) so that, o K Key LetS = (+k) with k € Kp. Define S’ =

ins’(v) = ins(v), Yv € uv. The following lemma proves that (+4(k)), which is aK strand since)(k) = k, Vk € uf
S’ is a regular strand obtained by transforming all the facts in from condition 1 of definition 5.

S to be well-tagged, using. » E Encryption: Let S = (—k, —f,+{(¢,) }x). k € Kp.
Define 5" = (4 (k), —(f), +({(t, /)}x)) which
Lemma 3:Let temp,1,ins,ins’ be as above; Then, is a valid encryption strand because({(t, f)}r) =
P(ins(temp)) = ins’ (temp). {w(f),¥(f)}x by condition 4 of definition 5.

Proof: Letv be a variable intemp. We will do a case « D Decryption Let S = (—k=1, —{(t, /)}x, +f), k €
analysis of all the possible forms thatan take intemp: Kp. Define 8" = (—y(k=Y), —w({(t, f)}x), +(f)),

which is a wvalid decryption strand because, Suppose there is afailure of authenticatiofias below [11,
Y{& Hre) = {(w(f),¥(f))}r by condition 4 of definition 2]:

definition 5. 1) There is a strandl = insl(templ) with C-height at
+ R Replaying Let S = (+f),f € Ep. Define S’ = leasthl. (an honest strand if’ with C' at a minimal

(+4(f)) which is a valid replaying strand becausgé,f) heighth1).

is merely well-tagged without any additional change inthe 2) vi ¢ Keys . insl(k) ¢ Kp. (no secret keys are com-

message. promised).

One special case here concerns when the penetratoB) There is no strand2 = ins2(temp2) with C-height at
receives a well-tagged fact and sends another fact in leasth2 such thatvz € X - insl(z) = ins2(x). (there

it's place, either by replaying or by “retagging™ i.e. is no matching strand forl in C, agreeing on some data

a combination of (a) F and R strands: (—f,+f") setX). (This says that since there is no matching honest

with f/ € Ep or (b) D and E strands: (—f,+f) participant to match the accepted authentication inthe

({1, f1) iy, =K1, +f1, +H{(t2, f2) } ko —k2, +f2)), With authentication is bogus.)

ki, ke € Kp, f = {(t1, f1)}x, @andf’ = {(t2, f2) }x, We show that there is a corresponding attackCth Let,
insl’(v) = ¢(insl(v)). Then:

E. Preserving Unique Origination in Bundles 1) Thereis astrangl’ = insl’(templ) = ¢ (insl(templ))

with C’-height at least1, corresponding te1, from the

Using ¢, for every edgetn — —n in C, we have created way we have constructed the honest strandS’of

a similar edgetvy(n) — —(n) transformingC into a well- 1 o _
tagged bundle. We have appligdonly on the tag component 2) ﬁil(ek)lé)iysichkmﬂ (k) ¢ Kp, becausansl’(k) =

,?rf abtaggle d @Cth we dr:d not (ljnttrr]odutce rc'jeV\t' faits apyt\r/]vhere 'r.‘%) There is no strand2’ = ins2’(temp2) with C’-height at
e bundle. We have changed the strand structure in the special’ |5 ¢\ \ch that/z € X . ins1’(z) = ins2(z).

case where a penetrator receives a fact and replays a fact Oéuppose there were such af: then, by the way we have

retags a fact, which is dealt with as explained above. constructed the honest strands(ify s2’ would correspond to
Lemma 4:Let C andC’ be defined as above. [j is a fact, s .
¢ ¢ Jo some strand2” = ins2”(temp2) with C’-height at leash2

uCr)iquer originating inC, then, f, also originates uniquely in <uch that:

Vv € Var . ins2/'(v) = (ins2”(v))

Proof: is effectively applied only on ill-tagged facts.
v y app y 99 But then, we would have for eveny e X:

From Lemma 1, they originate only dd andR strands. By
definition,) does not change the fact component. Also, by the . Ly
injectivity property ofy, there is no duplication of tags. Hence, Y(insl(z)) = !n51/($)
unique origination is preserved . [= ins2'(x)
= W(ins2"(x))
IV. PROOF However, contradicting part 3 of the definition, we would
A. Overview haveinsl(x) = ins2”(z), because of the injectivity property of

In this section we will prove our main result, whenever ther (condition 6 of definition 5).
is an attack on a protocol using our tagging scheme, there is u
also an attack on the protocol in the absence of replays. To be
precise, we need to prove that, _ C. Example
If there is an attack on a protocol under the tagging scheme, .]
there is also an attack on the protocol when adopting the tag?_—We illustrate our concepts with the Otway-Rees protocol.
ging scheme with all tagged messages correctly tagged hgyeret. al e_stabhsh a _number of properties of this pr_oto-
In other words, an attack on a protocol using the taggiﬁ@' in [ZQ, section 7.2]. This protpcol can be represented in our
scheme does not revolve around replays. We will consider 8¢heme in the form of the following templates:
attack to mean a failure of authentication at the end of a proto-init = (+(M, A, B{t1, M, No, A, B} ic,5),
col run. Any other properties can be similarly considered and — (M{t3, No, Kap}xas))
proven, e.g., non-repudiation, anonymity, fairness. For defin-
ing security properties and their violations, we will follow the 7esp = (—(M, A, B{t\, M, Na, A, B}k),
definitions and terminology given by Heatredr al[11].. +(M, A, B{t1, M, No, A, B} k¢ s {to, No, M, A, B} i),
— (MA{t3,No, KaB} ka5 {ta, Noy KB} K s)
B. Authentication (M, {ta, No, Kapticas))

Theorem 1:Let C be a bundle an@” be a well-tagged bun- serv = (—(M, A, B{t1, M, Ny, A, B} i , s {t2, M, Ny, A,

dle obtained by transforming. i.e. ¢ (C') = C’. If there is a BYkpe)s +(M{ts, No, Kap} i o {ta, No, Kaptrps))
failure of authentication ir”, there is also a failure of authen-
tication inC". Thayeret. alalso extend these results when this protocol is

Proof: executed in a “mixed” environment [21], when:

1) Ticket(Ly) = set of all terms of the forr{ NK'}x is [4] T. Aura. Strategies against replay attacks. Pioceedings of the 10th

unserved in ¥. i.e. secondary strands (strands belonging 'EEE Computer Society Foundations Works/yages 59 — 68, Rockport,
y (ging MA, June 1997. IEEE Computer Society Press.

to other runs) do not have entry points to this set. [5] C.A. Meadows. Analyzing the Needham-Schroeder public-key protocol:
2) Request(Ly) = set of all terms of the ford NM AB} k A comparison of two approacheESORICS 96, LNCS 114@ages 351—

i H ; i 364, 1996.

IS Strongly unservede. no term of this set ever originates [6] G. Lowe. Breaking and fixing the Needham-Schroeder public-key proto-

on a secondary strand. col using FDR. IrProceedings of TACASolume 1055, pages 147-166.
3) Lo N Kp 75 @; fgggger-Verlag, 1996. Also in Software Concepts and Tools, 17:93-102,
In particular, they establish _the following ‘initiator’s guaran- 77 ¢ mitchell. Limitations of Challenge-Response Entity Authentication.

tee’ under the above assumptions: Electronic Letters25(17):1195-1196, August 1989.

If s € X, is an initiator strand in a bundle, then there a|_[8] J. Alves-Foss. Multi-Protocol Attacks and the Public Key Infrastructure.

. . In Proc. National Information System Security Conferermzges 566—
ways exist primary Strandﬁ‘esp S Eresp and Sserv € Zserv 576, October 1998.

which agree on the initiator, responder’ advalues. i.e. au- [9] J.Kelsey, B. Schneier, and D. Wagner. Protocol Interactions and the Cho-

L . . . : sen Protocol Attack. IRroc. Security Protocols - 5th International Work-
thentication is guaranteed w.r.t. [11, definition 2]: there is no shop pages 91-104. LNCS 1361, 1997.

failure of authentication ifempl = init,temp2 = resp, X = [10] Li Gong. Variation on the Themes of Message Freshness and Replay
{A7 B, M}7 hi=hy=4 andKeyS — {KAS}- or the Difficulty of Devising Formal Methods to Analyze Cryptographic
. . . . Protocols. InProceedings of the Computer Security Workshoppeges
We can again use our main result in section IV to show that 137136 | o5 Alamitos, California, 1993.
this protocol achieves this guarantee even when all the th{eg James Heather, Gavin Lowe, and Steve Schneider. How to prevent type

it i i+h flaw attacks on security protocols. Rroceedings, 13th Computer Secu-
conditions are dropped and the tagging scheme adopted (with rity Foundations WorkshopEEE Computer Society Press, July 2000.

the appropriatim.s defined onnit and resp). In addition, COM- [12] Catherine Meadows. Open issues in formal methods for cryptographic
ponent numberlng assures us that the protocol remains invulner- protocol analysis.Proceedings of the DARPA Information Survivability

_ ; ; Conference and Exposition Volume | gfJanuary 2000.
able to the type-flaw attack shown in [17] which succeeds dﬁ%] U. Carlsen. Cryptographic protocol flaws. fmoc. IEEE Computer Se-

to replay of encrypted components inside the same run. curity Foundations Workshop Vlpages 192—200. IEEE Computer Press,
June 1994.
[14] Joshua D. Guttman and F. JavieHAYER. Protocol Independence
V. CONCLUSION through Disjoint Encryption13th IEEE Computer Security Foundations

) Workshoppages 24-34, July 2000.
Many times protocols are successfully attacked when an hgts] T.Y.C. Woo and S. S. Lam. A lesson on authentication protocol design.

est agent incorrectly accepts messages, “believing” that trll(f%ﬁl Operating Systems Revie28(3):24-37, 1994.
iq

. D. Otway and O. Rees. Efficient and Timely Mutual Authenticatiop-
possess some properties (eg. freshness). Whether a techniqUegrating Systems Revie1(1):8-10, January 1987.

prevents certain attacks depends upon preventing the horfEegt John A. Clark and Jeremy Jacob. A Survey of Authentication Protocol

user from accepting messages that do not have their claimed thgrature: Version 1.0. University of York, Department of Computer
Science, November 1997.

properties and on the inability of the penetrator to create ‘valigis] p. Karn and W. Simpson. The Photuris session key management protocol.
messages having those properties. In this paper we have intro- Internet draft: draft-simpson-photuris-17.txt, November 1997.

F. J. THAYER Fabrega, J. C. Herzog, and J. D. Guttman. Strand
duced one such scheme to prevent replay attack and proven H%t spaces: Proving security protocols corredaurnal of Computer Secu-

it stops replay attacks. In particular, we have taken an arbitrary rity, 7(2,3):191-230, 1999.

bundle, used a transformation on it to change it to a well tagg&8l F. J. HAYER Fabrega, J. C. Herzog, and J. D. Guttman. Honest ide-

bund| h ¢ t | Thi ible b als on strand space$?roceedings of the 11th IEEE Computer Security

undle, where no term represents replays. This was possible be- £ nqations workshopune 1998.

cause, if an honest agent is willing to accept an ill-tagged fact[at] F. Javier HiaveR Fabrega, Jonathan C. Herzog, and Joshua D. Guttman.

should accept any value in it's place. Attacks were then shown Mixed Strand Spaces. IRroceedings of the 12th IEEE Computer Secu-
.. P y P L . rity Foundations Workshqpolume 27(2), pages 10-14. IEEE Computer

to be existing on both or on none, indirectly proving that the sqciety Press, June 1999.

attacks are not based on replays, but on some other mechanism.

VI. ACKNOWLEDGEMENTS

We would like to thank Hamid R. Arabnia and the anony-
mous referees of this paper. Also, special thanks go to John
Clark, University of York for reviewing our paper and to Gavin
Lowe for valuable suggestions and discussions. Finally, we
would like to thank Joshua Guttman for some useful comments
about the idea and proof.

REFERENCES

[1] D. Denning and G. Sacco. Timestamps in key distribution protocols.
Communications of the ACN24(8):553-536, August 1981.

[2] Paul Syverson. A taxonomy of replay attacksPimceedings of the Com-
puter Security Foundations Workshop (CSFW®#ges 187-191, June
1994.

[3] Li Gong and Paul Syverson. Fail-stop protocols: An approach to design-
ing secure protocols. 16th International Working Conference on De-
pendable Computing for Critical Applicaitonpages 44-55, September
1995.

